If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+x^2=300
We move all terms to the left:
4x+x^2-(300)=0
a = 1; b = 4; c = -300;
Δ = b2-4ac
Δ = 42-4·1·(-300)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{19}}{2*1}=\frac{-4-8\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{19}}{2*1}=\frac{-4+8\sqrt{19}}{2} $
| 2v=3v-4 | | -7-9r^2=-691 | | -6(-5a-7)=-18 | | (9x-4)(-2+5x)-(9x-4)(3x-5)=0 | | 6r-10=9r-1 | | -6x+-21=x | | v^2+19v=4-4v^2 | | 2(-3a+5)=28 | | 5x+9-3x+6=22+5 | | 17y=85;y=9 | | -40=1/4n | | 27=15+n= | | 7f+6=8f | | 2v^2-18=-11v+2-2v^2 | | 3y+8=6y-10 | | 2/9*y=7/18 | | -n+2=n | | f(6)=6/6-2 | | 3n^2-3n+3=3-n^2 | | 9+7r=6r | | 27=15+n+ | | -5(3t-5)+6t=3t-4 | | a(a+8)-a(a+3)-23=3a+1 | | 7-5+3x-1=9x+0 | | 5n^2-n-3=3n^2-3 | | 1-2m+9=3m | | 3x(1x)=486 | | π*x^2*8.5=70 | | 12y–2=17y–17 | | 7-5+3x-1=9x+8 | | 7-5+3x-1=8x+9 | | 7-5+3x-1=2x+9 |